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We consider the one-dimensional quantum spin chain, which is called the XX
model (XX0 model or isotropic XY model) in a transverse magnetic field. We
are mainly interested in the entropy of a block of L neighboring spins at zero
temperature and of an infinite system. We represent the entropy in terms of a
Toeplitz determinant and calculate the asymptotic analytically. We derive the
first two terms of the asymptotic decomposition. Interestingly, these two terms
of decomposition clearly show a length scale related to the field h.
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nant; quantum entanglement.

1. INTRODUCTION

The derivation of macroscopic thermodynamics from microscopic dynam-
ics is not a priori and one should examine it critically when possible. As is
well known, the entropy is the main object in thermodynamics and statis-
tical physics. The exact calculation of the entropy in some simple yet non-
trival systems is interesting. Not only is it interesting for physics, it may
also be interesting for information theory. (1–3)

The physical system we consider is the XX model in a transverse
magnetic field and the entropy in which we are interested is that of a block
of L neighboring spins at zero temperature and of an infinite system. The
Hamiltonian for this model can be written as

HXX(h)=−C
N

n=1
(sx

ns
x
n+1+s

y
ns

y
n+1+hsz

n). (1)



Here sx
n , s

y
n , and s

z
n are Pauli matrices, which describe spin operators on the

nth lattice site, h is the magnetic field and N is the number of total lattice
sites of the spin chain (we take NQ. in this paper). This model has been
solved by E. Lieb, T. Schultz, and D. Mattis in the zero-magnetic field case (4)

and by E. Barouch and B. M. McCoy in the presence of a constant magnetic
field. (5) Some exact calculations of time-dependent properties also exist; for
examples, see ref. 6 by E. Barouch, B. M. McCoy, and M. Dresden and ref. 7
by D. B. Abraham, E. Barouch, G. Gallavotti, and A. Martin-Löf. The
ground state and excitation spectrum are well known. The ground state is
ferromagnetic for |h| > 2, while it is critical for |h| < 2. Let us denote the first
L neighboring spins as sub-system A and the rest as sub-system B. Mean-
while the whole system is in ground state |GSP. Then von Neumann entropy
(S(rA)) and Rényi entropy (Sa(rA)) (2) for subsystem A are defined as follows:

S(rA)=−Tr(rA ln rA), (2)

Sa(rA)=
1

1−a
ln Tr(raA), a ] 1 and a > 0. (3)

Von Neumann entropy is a well known object and Rényi entropy may also
be important for both information theory and statistical physics. (8) When
aQ 1, the related Rényi entropy becomes von Neumann entropy. Here rA
is the reduced density matrix of subsystem A, i.e., rA=TrB(rAB) and the
density matrix of the whole system is rAB=|GSPOGS| for zero temperature.
Since the calculations for von Neumann entropy and Rényi entropy are
very similar, we give a detailed calculation for the von Neumann entropy
only. The explicit result for Rényi entropy will be given without derivation.

Before we give the full derivation in the following sections, we first
summarize our results here. It is very interesting that one can introduce a
scaling variable L=2L/Lh with Lh=(1−(h2)

2)−
1
2 for |h| < 2 and Lh infinite

for |h| \ 2. Then, both the von Neumann entropy and Rényi entropy of
block spins have a very simple expression in the case of large L and small
L as follows:

Sa(rA) % ˛3
1

1−a ln ((L
2p)
a+(1−L

2p)
a)

L
p ln

p
L

(a ] 1) if 0 <L < 1

1+a−1

6 lnL+U{a}
1 (a=1) if L± 1.

(4)

Here U{a}
1 is the constant defined in Eq. (64). When a=1, the Rényi

entropy Sa(rA) becomes the von Neumann entropy, the coefficient for
logL in the large L expression becomes 1

3 and U
{a}
1 becomes

U1=−F
.

0
dt 3e

−t

3t
+

1
t sinh2(t/2)

−
cosh(t/2)
2 sinh3(t/2)

4 .
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Following ref. 4, let us introduce the two Majorana operators

c2l−1=1D
l−1

n=1
sz

n
2 sx

l and c2l=1D
l−1

n=1
sz

n
2 sy

l (5)

on each site of the spin chain. Operators cn are hermitian and obey the anti-
commutation relations {cm, cn}=2dmn. In terms of operators cn, the
Hamiltonian HXX can be rewritten as

HXX(h)=i C
N

n=1
(c2nc2n+1 −c2n−1c2n+2+hc2n−1c2n). (6)

Here different boundary effects can be ignored because we are only inter-
ested in cases with NQ.. This Hamiltonian can be subsequently diago-
nalized by linearly transforming the operators cn. It has been obtained (4, 5)

(also see refs. 10 and 11) that

OGS| cm |GSP=0, OGS| cmcn |GSP=dmn+i(BN)mn. (7)

Here the matrix BN can be written in the block form as

BN=R
P0 P−1 ... P1−N

P1 P0 x

x z x

PN−1 ... ... P0

S and Pl=
1
2p

F
2p

0
dh e−ilhG(h), (8)

where both Pl and G(h) (for NQ.) are 2×2 matrices,

G(h)=R 0 g(h)
−g(h) 0

S , g(h)=˛ 1, −kF < h < kF,
−1, kF < h < (2p−kF)

(9)

and kF=arccos(|h|/2). Other correlations such as OGS| cm · · · cn |GSP are
obtainable by the Wick theorem. The Hilbert space of subsystem A can be
spanned by <L

i=1 {s
−
i }

pi |0PF, where s
±
i is the Pauli matrix, pi takes the

value 0 or 1, and the vector |0PF denotes the ferromagnetic state with all
spins up. We are also able to construct a set of fermionic operators bi and
b+
i by defining

dm=C
2L

n=1
vmncn, m=1,..., 2L; bl=(d2l+id2l+1)/2, l=1,..., L, (10)
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with vmn — (V)mn. Here the matrix V is an orthogonal matrix. It is easy to
verify that dm is a hermitian operator and

b+
l =(d2l −id2l+1)/2, {bi, bj}=0, {b+

i , b
+
j }=0, {b+

i , bj}=di, j. (11)

In terms of fermionic operators bi and b+
i , the Hilbert space can also be

spanned by <L
i=1 {b

+
i }

pi |0Pvac. Here pi takes the value 0 or 1; the 2L fer-
mionic operators bi and b+

i and the vacuum state |0Pvac can be constructed
by requiring

bl |0Pvac=0, l=1,..., L. (12)

We shall choose a specific orthogonal matrix V later.

2. DENSITY MATRIX OF SUBSYSTEM A

Let {kI} be a set of orthogonal bases for the Hilbert space of any
physical system. Then the most general form for the density matrix of this
physical system can be written as

r=C
I, J

c(I, J) |kIPOkJ |. (13)

Here c(I, J) are complex coefficients. We can introduce a set of operators
P(I, J) by P(I, J)3 |kIPOkJ | and P̃(I, J) satisfying

P̃(I, J) P(J, K)=dI, K |kIPOkI |, P(I, J) P̃(J, K)=dI, K |kIPOkI |. (14)

There is no summation over repeated indices in these formulas. We shall
use an explicit summation symbol through the whole paper. Then we can
write the density matrix as

r=C
I, J

c̃(I, J) P(I, J), c̃(I, J)=Tr(rP̃(J, I)). (15)

Now let us consider the quantum spin chain defined in Eq. (1). For the
subsystem A, the complete set of operators P(I, J) can be generated by
<L

i=1 Oi. Here we take operator Oi to be any one of the four operators
{b+

i , bi, b
+
i bi, bi b

+
i }. (Remember that bi and b+

i are the fermionic operators
defined in Eq. (10).) It is easy to find that P̃(J, I)=(<L

i=1 Oi)† if
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P(I, J)=<L
i=1 Oi. Here † means hermitian conjugation. Therefore, the

reduced density matrix for subsystem A can be represented as

rA=C TrAB 1rAB 1D
L

i=1
Oi
2†2 D

L

i=1
Oi. (16)

Here the summation is over all possible different terms <L
i=1 Oi. For the

whole system to be in the pure state |GSP, the density matrix rAB is repre-
sented by |GSPOGS|. Then we have the expression for rA as follows:

rA=C OGS| 1D
L

i=1
Oi
2† |GSP D

L

i=1
Oi. (17)

This is the expression of the density matrix with coefficients related to
multi-point correlation functions. These correlation functions are well
studied in the physics literature. (9) Now let us choose matrix V in Eq. (10)
so that the set of fermionic bases {b+

i } and {bi} satisfy the equations

OGS| bibj |GSP=0, OGS| b+
i bj |GSP=di, jOGS| b

+
i bi |GSP. (18)

Then the reduced density matrix rA represented as the sum of products in
Eq. (17) can be represented as a product of sums:

rA=D
L

i=1
(OGS| b+

i bi |GSP b+
i bi+OGS| bib

+
i |GSP bib

+
i ). (19)

Here we used the equations OGS| bi |GSP=0=OGS| b+
i |GSP and the Wick

theorem. This fermionic basis was suggested by G. Vidal, J. I. Latorre,
E. Rico, and A. Kitaev in refs. 10 and 11. A similar result for the density
matrix of a subsystem in terms of the free spinless fermion model was
obtained by C. A. Cheong and C. L. Henley in ref. 12.

3. CLOSED FORM FOR THE ENTROPY

Now let us find a matrix V in Eq. (10), which will block-diagonalize
correlation functions of the Majorana operators cn. From Eqs. (8) and (10),
we have the following expression for the correlation function of dn

operators:

OGS| dmdn |GSP=C
2L

i=1
C
2L

j=1
vmiOGS| cicj |GSP vjn,

OGS| cmcn |GSP=dmn+i(BL)mn,

OGS| dmdn |GSP=dmn+i(B̃L)mn.

(20)
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The last equation is the definition of matrix B̃L. Matrix BL is the submatrix
of BN defined in Eq. (8) with m, n=1, 2,..., L. We also require B̃L to be of
the form (10, 11)

B̃L=VBLVT=Â
L

m=1
nm R

0 1

−1 0
S=W é R

0 1

−1 0
S . (21)

Here the matrix W is a diagonal matrix with elements nm (all nm are real
numbers). Therefore, choosing matrix V satisfying Eq. (21) in Eq. (10), we
obtain 2L operators {bl} and {b+

l } with the following expectation values:

OGS| bm |GSP=0, OGS| bmbn |GSP=0, OGS| b+
mbn |GSP=dmn

1+nm
2

.
(22)

Using the simple expression for the reduced density matrix rA in Eq. (19),
we obtain

rA=D
L

i=1

11+ni
2

b+
i bi+

1− ni
2

bib
+
i
2 . (23)

This form immediately gives us all the eigenvalues lx1x2 · · · xL
of the reduced

density matrix rA:

lx1x2 · · · xL
=D

L

i=1

1+(−1)xi ni
2

, xi=0, 1 -i. (24)

Note that in total we have 2L eigenvalues. Hence, the entropy of rA from
Eq. (2) becomes

S(rA)= C
L

m=1
e(1, nm) (25)

with

e(x, n)=−
x+n
2

ln 1x+n
2
2−x− n

2
ln 1x− n

2
2 . (26)

We shall use this result further to obtain the analytical asymptotic. Func-
tion e(1, n) in Eq. (25) is equal to the Shannon entropy function H(1+n2 ).
However, in the following calculation [Eq. (31)], we will need the more
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general function e(x, n) instead of H(n). Note further that the matrix BL

can have a direct product form, i.e.,

BL=GL é R 0 1
−1 0
S with GL=R

g0 g−1 · · · g1−L

g1 g0 x

x z x

gL−1 ... ... g0

S , (27)

where gl is defined as

gl=
1
2p

F
2p

0
dh e−ilhg(h) and g(h)=˛ 1, −kF < h < kF,

−1, kF < h < (2p−kF)
(28)

and kF=arc cos(|h|/2). From Eqs. (21) and (27), we conclude that all nm
are just the eigenvalues of the real symmetric matrix GL.

However, to obtain all eigenvalues nm directly from the matrix GL is a
non-trivial task. Let us introduce

DL(l)=det(G̃L(l) — lIL −GL). (29)

Here G̃L is a Toeplitz matrix (see ref. 17) and IL is the identity matrix of
dimension L. Obviously we also have

DL(l)=D
L

m=1
(l− nm). (30)

From the Cauchy residue theorem and the analytical property of e(x, n),
S(rA) can be rewritten as

S(rA)= lim
EQ 0+

lim
dQ 0+

1
2pi

G
c(E, d)

e(1+E, l) d ln DL(l). (31)

Here the contour c(E, d) in Fig. 1 encircles all zeros of DL(l), but the func-
tion e(1+E, l) is analytic within the contour. Just as the Toeplitz matrix
GL is generated by the function g(h) in Eqs. (27) and (28) [see next
section], the Toeplitz matrix G̃L(l) is generated by the function g̃(h)
defined by

g̃(h)=˛l−1, −kF < h < kF,
l+1, kF < h < (2p−kF).

(32)

Note that g̃(h) is a piecewise-constant function of h on the unit circle, with
jumps at h=±kF. Hence, if one can obtain the determinant of this
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Fig. 1. The contour c(E, d). Bold lines (−., −1− E) and (1+E,.) are the cuts of integrand
e(1+E, l). Zeros of DL(l) [Eq. (30)] are located on bold line (−1, 1) and this line becomes
the cut of d log DL(l) for LQ. [Eq. (47)]. The arrow is the direction of the route of the
integral we take and R is the radius of the circle.

Toeplitz matrix analytically, one will be able to get a closed analytical
result for S(rA), which is our new result. Now the calculation of S(rA)
reduces to the calculation of the determinant of the Toeplitz matrix G̃L(l).
Before we calculate the determinant of the Toeplitz matrix G̃L(l), we also
want to point out two special cases which allow us to obtain an explicit
form for these eigenvalues nm and hence the entropy S(rA). These are cases
with a small lattice size of the subsystem A and magnetic h close to the cri-
tical values ±2. Let us take k̃F=kF for kF < p

2 or k̃F=p−kF for kF > p
2 .

For the case k̃FL° 1, the Toeplitz matrix GL can be well approximated by
a matrix with diagonal elements (2k̃F/p−1) and all other matrix elements
equal to 2k̃F/p. Hence, we can obtain all eigenvalues for the Toeplitz
matrix GL as {2Lk̃F/p−1, −1, −1,..., −1} and S(rA) becomes

S(rA) %
2Lk̃F

p
ln
p

2Lk̃F

, 0 < k̃FL° 1. (33)

The expression above can also be re-expressed in terms of h as

S(rA) %
2L(1−h2/4)

1
2

p
ln

p

2L(1−h2/4)
1
2

, 0 < (1−h2/4)
1
2 L° 1. (34)

4. THE TOEPLITZ MATRIX AND THE FISHER–HARTWIG

CONJECTURE

The Toeplitz matrix TL[f] is said to be generated by a function f(h) if

TL[f]=(fi− j), i, j=1,..., L−1 (35)
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where

fl=
1
2p

F
2p

0
f(h) e−ilh dh (36)

is the l th Fourier coefficient of the generating function f(h). The determi-
nant of TL[f] is denoted by DL. The study of the asymptotic behavior of
the determinant of the Toeplitz matrix with a singular generating function
was initiated by T. T. Wu (13) in his calculation of spin correlation in the
two-dimensional Ising model. Later his result was incorporated into a more
general conjecture, i.e., the famous Fisher–Hartwig conjecture. (14–17)

Fisher–Hartwig Conjecture. Suppose the generating function of
the Toeplitz matrix f(h) is singular in the following form:

f(h)=k(h) D
R

r=1
tbr, hr (h) uar, hr (h), (37)

where

tbr, hr (h)=exp[−ibr(p−h+hr)], hr < h < 2p+hr (38)

uar, hr (h)=(2−2 cos(h−hr))ar, Rar > − 1
2 (39)

and k: TQ C is a smooth non-vanishing function with zero winding
number. Then as nQ., the determinant of TL[f] can be expressed as
follows

DL=(F[k])L 1D
R

i=1
La

2
i −b

2
i 2 E[k, {ai}, {bi}, {hi}], LQ.. (40)

Here F[k]=exp( 1
2p >2p0 ln k(h) dh). Further assuming that there exists the

Weiner–Hopf factorization

k(h)=F[k] k+(exp(ih)) k−(exp(−ih)), (41)

the constant E[k, { ai} , { bi} ,{ hi}] in Eq. (40) can be written as

E[k, {ai}, {bi}, {hi}]=E[k]

×D
R

i=1
G(1+ai+bi) G(1+ai −bi)/G(1+2ai)

×D
R

i=1
(k−(exp(ihi)))−ai −bi (k+(exp(−ihi)))−ai+bi

× D
1 [ i ] j [ R

(1− exp(i(hi −hj)))−(ai+bi)(aj −bj), (42)
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where G is the Barnes G-function, E[k]=exp(;.

k=1 ksks−k), and sk is the
kth Fourier coefficient of ln k(h) . The Barnes G-function is defined as

G(1+z)=(2p)z/2 e−(z+1) z/2− cEz
2/2 D

.

n=1
{(1+z/n)n e−z+z2/(2n)}, (43)

where cE is the Euler constant and its numerical value is 0.5772156649 · · · .
This conjecture has not been proven for the general case. However, there
are various special cases for which the conjecture was proven.

For our case, the generating function g̃(h) has two jumps at h=±kF

and it has the following canonical factorization:

g̃(h)=k(h) tb1(l), kF (h) tb2(l), −kF (h) (44)

with

k(h)=(l+1) 1l+1
l−1
2−kF/p

, b(l)=−b1(l)=b2(l)=
1
2pi

ln
l+1
l−1

. (45)

The function t was defined in Eq. (38). We fix the branch of the logarithm
in the following way:

−p [ arg 1l+1
l−1
2 < p. (46)

For l ¨ [−1, 1], we know that |R(b1(l))| <
1
2 and |R(b2(l))| <

1
2 and the

Fisher–Hartwig conjecture was proven by E. L. Basor for this case. (15)

Therefore, we will call it a theorem instead of a conjecture for our applica-
tion. Hence following the theorem in Eq. (40), the determinant DL(l) of
lIL −GL can be asymptotically represented as

DL(l)=(2−2 cos(2kF))−b
2(l) {G(1+b(l)) G(1−b(l))}2

×{(l+1)((l+1)/(l−1))−kF/p}L L−2b2(l). (47)

Here L is the length of subsystem A and G is the Barnes G-function and

G(1+b(l)) G(1−b(l))=e−(1+cE) b
2(l) D

.

n=1

311−b
2(l)
n2
2n eb2(l)/n24 . (48)
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5. ASYMPTOTIC FORM OF THE ENTROPY

Now let us come back to the calculation of the entropy S(rA). For
later convenience, let us define

U(l)=C
.

n=1

n−1b2(l)
n2−b2(l)

. (49)

Taking the logarithmic derivative of DL(l) [Eq. (47)], we obtain

d ln DL(l)
dl

=11−kF/p
1+l

−
kF/p
1−l
2 L

−
4
ip

b(l)
(1+l)(1−l)

(ln L+ln(2 |sin kF |)+(1+cE)+U(l)). (50)

Let us substitute the asymptotic form above for d ln DL(l)/dl into
Eq. (31) for the entropy S(rA):

S(rA)=S1(rA)+S2(rA) (51)

with

S1(rA)= lim
EQ 0+

lim
dQ 0+

1
2pi

G
c(E, d)

e(1+E, l) 11−kF/p
1+l

−
kF/p
1−l
2 L,

S2(rA)= lim
EQ 0+

lim
dQ 0+

2
p2 G

c(E, d)
dl

e(1+E, l) b(l)
(1+l)(1−l)

×(ln L+ln(2 |sin kF |)+(1+cE)+U(l)), (52)

where the contour is taken as shown in Fig. 1. The first integral in Eq. (52)
can be carried out by using the residue theorem and the definition of the
function e(x, n) in Eq. (26). We found that the linear term in L for the
entropy S(rA) vanishes. The second integral can be calculated as follows:
First, we note that

G
c(E, d)

dl( · · · )=1F
AF
+F

FED
+F

DC
+F

CBA

2 dl ( · · · ). (53)
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Second, we can show that the contribution of the integral from the circular
arcs FED and CAB vanishes. Therefore, the entropy [Eq. (52)] can be
written as

S(rA)= lim
EQ 0+

2
p2
1F −1+i0+

1+i0+
+F

1+i0 −

−1+i0 −
2 dl e(1+E, l) b(l)

(1+l)(1−l)

×(ln L+ln(2 |sin kF |)+(1+cE)+U(l)). (54)

For further simplification, we shall use the fact that

b(x+i0 ±)=
1
2ip
1 ln 1+x

1−x
+ i(p−0+)2=−iW(x) + 11

2
−0+2 (55)

for x ¥ (−1, 1) and

W(x)=
1
2p

ln
1+x
1−x

. (56)

We can now write the entropy S(rA) as

S(rA)=
2
p2

F
1

−1
dx

e(1, x)
1−x2 (ln L+ln(2 |sin kF |)+(1+cE))

+C
.

n=1

2n−1

p2 F
1

−1
dx

e(1, x)
1−x2
1 (12+iW(x))3

n2−(12+iW(x))2
+

(12− iW(x))3

n2−(12− iW(x))2
2 ,
(57)

where e(1, x) is defined in Eq. (26). This expression for S(rA) contains two
integrals. The first integral can be expressed exactly as

2
p2 F

1

−1
dx 1−1+x

2
ln

1+x
2

−
1−x
2

ln
1−x
2
2 1
1−x2=

1
3
. (58)

The second integral in Eq. (57) can be written as

U0=C
.

n=1

n−1

p2
F
1

−1
dx 1− 1

1−x
ln

1+x
2

−
1

1+x
ln

1−x
2
2

×1 (12+iW(x))3

n2−(12+iW(x))2
+

(12− iW(x))3

n2−(12− iW(x))2
2 , (59)
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which can be further simplified. (18) Finally we have that

S(rA)=
1
3
ln L+

1
6
ln 11−1h

2
222+ln 2

3
+U1, LQ., (60)

with

U1=−F
.

0
dt 3e

−t

3t
+

1
t sinh2(t/2)

−
cosh(t/2)
2 sinh3(t/2)

4 (61)

for the XX model. The leading term of the asymptotic of the entropy 1
3 ln L

in Eq. (60) was first obtained based on numerical calculation and a simple
conformal argument in refs. 10 and 11 in the context of entanglement. We
also want to mention that a complete conformal derivation for this entropy
was found in ref. 19. One can numerically evaluate U1 to a very high
accuracy to be 0.4950179 · · · . For the zero magnetic field (h=0) case,
the constant term U1+ln 2/3 for S(rA) is close to but different from
(p/3) ln 2, which can be found by taking the numerical accuracy to be
more than five digits.

6. SUMMARY

In this paper, we study the entropy of a block of L neighboring spins
in the XX model with the presence of a transverse magnetic field. We
obtain Eqs. (34) and (60) for the von Neumann entropy of a block of L
neighboring spins in XX with small L and large L respectively. It is inter-
esting to note that there is a natural length scale Lh=1/(1−(h2)

2)
1
2 for

|h| < 2 and Lh=. for |h| \ 2 to incorporate the magnetic field effects.
When |h| increases from less than 2 to larger than 2, the system evolves
from the critical phase into the ferromagnetic phase and the length scale Lh

increases. Lh shows the singular behavior at the phase-transition point. Let
us introduce the scaling variable L=2L/Lh, i.e.,

L — 2L 11−1h
2
222

1
2

for |h| < 2. Then we can express the von Neumann entropy of L neighbor-
ing spins in the following simple form:

S(rA)=3
L
p ln

p
L if 0 <L < 1

1
3 lnL+U1 if L± 1

(62)
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with

U1=−F
.

0
dt 3e

−t

3t
+

1
t sinh2 (t/2)

−
cosh(t/2)
2 sinh3(t/2)

4 .

For a small lattice and a magnetic field close to ±2, we obtain the result
directly. To obtain the result for large L asymptotically, we first expressed
the entropy in terms of the determinant of a Toeplitz matrix. Then we used
a special case of the Fisher–Hartwig conjecture; (14) this special case was
proven in ref. 15.

From similar calculations, we also obtain the Rényi entropy in Eq. (3)
to be

Sa(rA)=˛
1

1−a ln ((L
2p)

a+(1−L
2p)
a) if 0 <L < 1

1+a−1

6 lnL+U{a}
1 if L± 1.

(63)

Here

U{a}
1 =−

1
p2 F

1

−1
dx

sa(x)
1−x2
1k 11

2
− iW(x)2+k 11

2
+iW(x)22 , (64)

sa(x)=
1

1−a
ln 111+x

2
2a+11−x

2
2a2 , a ] 1, (65)

k(x) —
d
dx

ln C(x)=−cE+C
.

n=0

1 1
n+1

−
1

n+x
2 , (66)

W(x)=
1
2p

ln
1+x
1−x

(67)

with cE the Euler constant and C(x) the well known Gamma function.

APPENDIX: SIMPLIFICATION OF FORMULA

In this Appendix, we show more details for simplification of U0 (59) in
detail. In order to simplify U0, we will use the function k(x), which is
defined as

k(x) —
d
dx

ln C(x)=−cE+C
.

n=0

1
n+1

− C
.

n=0

1
n+x

(68)
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with cE the Euler constant and C(x) the well known Gamma function, and
the property

k(x+1)=k(x)+
1
x
. (69)

Introducing z (z̄) — 1
2+(−) iW(x) and using Eqs. (68) and (69), we obtain

C
.

n=1
n−1 1 ( 1

2+iW(x))3

n2−( 1
2+iW(x))2

+
( 1
2− iW(x))3

n2−( 1
2− iW(x))2

2

=k(1)−1−
1
2
k 11

2
− iW(x)2−1

2
k 11

2
+iW(x)2 (70)

by using Eq. (69) and the definition of z and z̄. Hence, we obtain

U0=
1
p2 F

1

−1
dx 1 − 1

1−x
ln

1+x
2

−
1

1+x
ln

1−x
2
2

×5k(1)−1−
1
2
k 11

2
− iW(x)2−1

2
k 11

2
+iW(x)26

=U1 −
1+cE
3

(71)

with U1 defined as

U1=−
1
2p2 F

1

−1
dx 1 − 1

1−x
ln

1+x
2

−
1

1+x
ln

1−x
2
2

×5k 11
2
− iW(x)2+k 11

2
+iW(x)26 . (72)

We now perform a change of variable using w= 1
2p ln

1+x
1−x :

U1=
−2
p

F
.

0
dw(ln[2 cosh(pw)]−pw tanh(pw))

×5k 11
2
− iw2+k 11

2
+iw26 . (73)

We note that

ln[2 cosh(pw)]−pw tanh(pw)=11− d
da
2 ln(1+e−2pwa):

a=1
. (74)
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and that

U1=
−2i
p

F
.

0
dw(ln[2 cosh(pw)]−pw tanh(pw)) ·

d
dw

ln
C( 1

2− iw)
C( 1

2+iw)
. (75)

Use the following expression for the logarithm of the Gamma function:

ln C(z)=F
.

0

5z−1−
1−e−(z−1) t

1−e−t
6 e−t

t
dt (76)

which is particularly convenient because we need only the imaginary part
of it:

ln
C( 1

2− iw)
C( 1

2+iw)
=−i F

.

0

52we−t−
sin(wt)
sinh(t/2)
6 dt

t
. (77)

After some elementary but tedious calculations, we finally obtain

U1=−F
.

0
dt 3e

−t

3t
+

1
t sinh2(t/2)

−
cosh(t/2)
2 sinh3(t/2)

4 . (78)
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